Comparison of different gaits with rotation of the feet for a planar biped
نویسندگان
چکیده
Fast human walking includes a phase where the stance heel rises from the ground and the stance foot rotates about the stance toe. This phase where the biped becomes under-actuated is not present during the walk of humanoid robots. The objective of this study is to determine if this phase is useful to reduce the energy consumed in the walking. In order to study the efficiency of this phase, six cyclic gaits are presented for a planar biped robot. The simplest cyclic motion is composed of successive single support phases with flat stance foot on the ground. The most complex cyclic motion is composed of single support phases that include a subphase of rotation of the stance foot about the toe and of finite time double support phase. For the synthesis of these walking gaits, optimal motions with respect to the torque cost, are defined by taking into account given performances of actuators. It is shown that for fast motions a foot rotation sub-phase is useful to reduce the criteria cost. In the optimization process, under-actuated phase (foot rotation phase), fullyactuated phase (flat foot phase) and over-actuated phase (double support phase) are considered.
منابع مشابه
Stable Gait Planning and Robustness Analysis of a Biped Robot with One Degree of Underactuation
In this paper, stability analysis of walking gaits and robustness analysis are developed for a five-link and four-actuator biped robot. Stability conditions are derived by studying unactuated dynamics and using the Poincaré map associated with periodic walking gaits. A stable gait is designed by an optimization process satisfying physical constraints and stability conditions. Also, considering...
متن کاملRotational Stability Index (RSI) point: postural stability in planar bipeds Goswami Dip∗ and Vadakkepat Prahlad
The postural stability of bipedal robots is investigated in perspective of foot-rotation during locomotion. With foot already rotated, the biped is modeled as an underactuated kinematic structure. The stability of such biped robots is analyzed by introducing the concept of rotational stability. The rotational stability investigates whether a biped would lead to a flat-foot posture or the biped ...
متن کاملEnergy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملRotational Stability Index (RSI) point: postural stability in planar bipeds
The postural stability of bipedal robots is investigated in perspective of foot-rotation during locomotion. With foot already rotated, the biped is modeled as an underactuated kinematic structure. The stability of such biped robots is analyzed by introducing the concept of rotational stability. The rotational stability investigates whether a biped would lead to a flat-foot posture or the biped ...
متن کاملFrom Passive Dynamic Walking to Passive Turning of Biped walker
Dynamically stable biped robots mimicking human locomotion have received significant attention over the last few decades. Formerly, the existence of stable periodic gaits for straight walking of passive biped walkers was well known and investigated as the notion of passive dynamic walking. This study is aimed to elaborate this notion in the case of three dimensional (3D) walking and extend it f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotics and Autonomous Systems
دوره 57 شماره
صفحات -
تاریخ انتشار 2009